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1, INTRODUCTION

Cubic spline interpolation problems of matching the spline at one inter­
mediate point and spline with multiple knots at two intermediate points
between the successive mesh points have been studied in [6], The former of
these problems has been answered only for the case of uniform meshes, For
this case, further studies in the direction of the result proved in [6] have
been made in [2-4], The object of the present paper is to study the
existence, uniqueness, and convergence properties of cubic spline inter­
polant matching at one intermediate point between the successive mesh
points, which are not necessarily equispaced, Considering a geometric mesh
we shall show that nonuniform meshes permit a wider choice for the points
of interpolation than those possible for the case of uniform meshes,
Interesting studies of general cardinal spline interpolation on a geometric
mesh have been made by Micchelli [5, p.241],

2. EXISTENCE AND UNIQUENESS

Let a mesh on [0, 1] be given by

P: {0=XO<x 1 < ... <Xn = I}
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with h; = X;- X;_ l' Ii = max; hi, and h = min, h; for i = 1,2,..., n. Let 7[k

denote the set of all algebraic polynomials of degree not greater than k. For
a function s defined over P we denote the restriction of s over [x; _ l' x;] by
s" The class S(3, P) of cubic splines defined over P is given by

S(3, P)= {s: SE C2
, S;E7[, for i= I, 2, ..., n}.

Writing t;=x; 1 +eh; with o~e~ I and considering a given functionf
we introduce the interpolatory conditions

s(t;) =f(tJ, i=O, I, ..., n, (2.1 )

where to= I (or 0) if e (or (l-e)) lies in a subinterval of [0,1] which
includes O. We pose the following.

PROBLEM A. Suppose!, exists at 0 and 1 and s'(J) = !,(J),.i = 0, 1. Then
does there exist a spline interpolant s E S(3, P) off which satisfies (2.1)?

It may be observed that the existence and uniqueness of the complete
cubic spline interpolant off matching at the mesh points answers Problem
A when e= 0 (see [I]).

In order to answer Problem A for other choices of e, we set s" (xJ = M;
and observe that for the interval [x; l' x;],

6h;s(x)=(x;-x)' M; 1+(x-x; I)' M;+6h;(x-l;)c;+6h,d;, (2.2)

where c; and d; are appropriate constants. For any sequence < an > we
write San for (I - e)an+ ean+ 1 and notice that since s E C2

,

(2.3 )

where L1 is the usual forward difference operator.
For any function g of e. h; _I' hi' and h;+ l' we write for convenience g*

for the function obtained from g by interchanging e with e* = (I - e) and

h; I withh;+I'
Eliminating c;, d; between Eqs. (2.1 )-(2.3) we get

= 6[(6h i 1) L1f(tJ - ()h i)L1/(ti 1)],

where R i = e'h7+ 1 bh i 1 and

1 < i<n, (2.4 )
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Since 0 ~ (j ~ I, it may be directly seen that in Eq. (2.4), R" R,*, T" and T,*
are all nonnegative.

The system of (n _. 2) equations given by (2.4) leaves three degrees of
freedom which are supplemented by the boundary conditions given by
Problem A. We are thus set to prove the following.

THEOREM 2.1. There exiSIS a unique S in S( 3, P l salislving Ihe
requirements oj" Prohlem A if (i) 0 ~ 0 ~ 0.44 and (h, >7 I is nonincreasing or
if (ii) 0.56 ~ 0 ~ I and (h, >;' I is nondecreasing.

3. PROOF OF THEOREM 2.1

We set

(3.1 )

and first consider the case (i). Using the interpolatory requirements of
Problem A, Eq. (2.2), and the assumption that .\' E C2

, we obtain

Mo/o+MI/I+Mel7.=6hl[f(le)-/(tI)-f'(xo)6hIJ, (3.2)

M" J7.+M" JI+M,Jo=6h"[f'(x,,)()h,, 1-/(1")+/(1,, I!J, (3.3)

M" I 0*1 II;; + M"O*2(2 + 0) h,; = 6h" [O*hJ'(x,,) -fix,,) +/(I,,)J, (3.4)

where 10 = 311~ MIl - 0*3 h;; 17. = (/111 1113; II = 10 - 12 - hi r2 and [0' II' and Ie
are respectively obtained from Ilh II' and 12 by interchanging (I with 0*, hi
with h", and he with h" I' Collecting Eqs. (3.2), (2.4) with i = 2, 3, ... , n - I,
along with (3.3 )-( 3.4) in that order, we may write them as

CI(M,)=(F,I, (3.5 )

where C I is the coefficient matrix, (M,) is the single column matrix, and
(F,) is the single column matrix of the values on the right-hand side of the
system of equations under consideration.

We first notice that in C I the excess of the diagonal element over the
sum of other elements in ith row for I < i < n is

r,~ I M1, 1+ (r, + 201 h;) (jh i = A" (3.6)

say. Using (i) we observe that J(O) is a decreasing function of 0 for relevant
values of 0 so that J(0)~J(0.44»Oand we have

r,?' J(O) II;',

A,~2(J(O)+01)h;,MI" I ~J(())h1.

(3.7)

(3.8 )
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Again using (i) and (3.6), we see that the elements of C 1 in ith row for
i = I, /1, /1 + I are nonnegative and thc excess of the diagonal element over
the sum of the other elements in each of these rows is not less than J( 8) h3

•

Thus C 1 is a diagonally dominant matrix so that C 1 1 exists and its row­
max norm IS

(3.9)

This proves Theorem 2.1 in the case (i).
In the other casc in which (ii) holds, we see that the boundary conditions

of Problem A yield (3.2) (3.3) and the following in place of (3.4):

M o{f(3 - 8) hi + M 103 hi = 6h I [I(ll) -f(xo)- OhJ'(xo)]' (3.10)

Now rearranging Eqs.(3.IO), (3.2), (2.4) with i=2,3,.... /1-1 and (3.3)
in that order, we may write them as

C2 (M,) = ( Ft ), (3.11)

where C 2 is the coefficient matrix and (Ft) is the single column matrix of
the values on the right-hand side of the system of equations under con­
sideration.

Again we observe that in C2 the excess of the diagonal element over the
sum of the other elements in ith row for 2 < i:(: /1 is Ar But in view of thc
condition (ii) we see that J(8*) is an increasing function of 8 so that
J( 8*) ~ J(O.56) > 0 and we have

r,* ~J(O*)h~.

At? 2(J( ()*) + ()*' )h~ i'lh 1 ~ J( ()* )h'.

(3.12)

(3.13 )

We also see that the difference of the diagonal element in the ith row for
i = 1, 2, /1 + lover the sum of the other elements in each row is not less
than J( 8*) h3

• Thus C2 is invertible and the row-max norm of C 2 I is

(3.14 )

This completes the proof of Theorem 2.1.

4. ERROR BOUNDS

In this section we shall obtain bounds for the function c = s -fwhere s is
the complete cubic spline interpolant off in 5(3. Pl. Given any function g
we write for convenience g(X,)=gi and w(g, h) for the modulus of con­
tinuity of g.
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We first consider the spline interpolant s off under the condition (i) of
Theorem 2.1. Writing Eq. (3.5) as

(4.1 )

we first estimate IDJ
Setting K,U,k)=3(fJh, I)! ()hf, we observe that

(4.2)

Now applying Taylor's theorem, we see that for i = 2, 3, ... , n - 1,

F,= K,(I, 2)1" Cv/+ I) + K,(2, 1)f" (y,),

= K,( 1, 2)(f"(y, + j) -I:') + K,(2, 1)(f"(y,) -f:')

- R,!Jf;' + T,* !Jf;' I + R,* CI:' -/;' 2)'

Thus, in view of (4.2), we have for 1 < i < n

(4.3)

(4.4 )

But under the condition (i) of Theorem 2.1 we have

so that for 1 < i < n

(4.6)

Observing that 10 + II + 12 = hi K j (0,2) + 2(JhT K) (0,1) and using Taylor's
theorem, we notice that for some ZI E (xo, XI)

IDII = Ih! K 1 (0, 2)(/"(.1'2) -fn + 2(JhT K I (0,1 )(f"(ZI ) - fn
+ lo!Jf;;' -/2 !Jfl" I ,,; 15/? IV (f ", 11).

By a similar argument we notice that

(4.7)

for i = n, n + 1. (4.8 )

Combining (3.9) with (4.6 )-(4.8), we observe that

II(e;,)II"; (G(O) - 1)w(f", fi) (4.9 )
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where G( 8) - 1 = 19(iiih )3!J(8). N ow using the standard arguments (see
[6, p. 246]) it follows that

Ile(2)11 ~ G(8)w(f", Ii)

and

(4.10)

for r = O. 1. (4.11 )

This proves the following when the condition (i) holds.

THEOREM 4.1. Suppose that fE C 2 and s is the complete cubic spline
interpolant off of Theorem 2.1. Then for r = 0, 1, 2,

II (s -/YII ~ 2K( 8)(1i)2 'w(f", 11) (4.12)

where K(8) is some positive function o{ 8.

Following closely the proof of Theorem 4.1 for the case (i), we obtain
(4.12) for the case (ii) with K(8) = G(O*).

5. PERIODIC SPLINES

The boundary conditions

s'(O) = s'( 1) for r = 0, 1, 2, (5.1 )

alongs with (2.1), define the periodic spline interpolant off at the points t i .

It is worth noticing that the boundary condition (5.1) yields equations
which along with (2.4) have a coefficient matrix without diagonal
dominant property for 0 < 8 < 1 and we are, therefore, unable to conclude
the uniqueness of the periodic cubic spline interpolant of f at points other
than the mesh points. However, takingfE C 2 and assuming thatfand s are
I-periodic so that afortiori (5.1) holds, Meir and Sharma [6] have studied
interpolation by such a cubic periodic spline for the case of uniform mesh.
In order to study a similar problem for nonuniform meshes we introduce
the following.

Considering an extension of a given strictly increasing sequence
Y= <Yl>;'~O to a strictly increasing sequence <Y;)7:~, we say that a
function f is in class E, if f( yJ =f( Y

I
+ 11) for j = 0, 1, 2. Cubic splines s

satisfying the conditions

and s" EE, (5.2)
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define the class SI (3, P) of extended periodic splines. We shall now deduce
the following from the proof of Theorem 2.1.

THEOREM 5.1. Suppose (f(t,) >;'~ / arc given functional values. Il (i)
0:(; ():(; 0.44 and <h,>;'+/ is nonincreasing or i((ii) 0.56:(; ():(; 1 and <h,>;'~ /
is nondecreasing then there exists a unique splines in 51 (3, P) which satis/les
the interpolatorr condition (2.1 ). Further. itfE C2 and f" E E, then

Il'here .1'(11)-1 = 19(11/h)'/J(O).

for r=O, 1.2. (5.3 )

Prool of the Theorem 5.1. Since .I' E E{ it follows from the interpolatory
condition (2.1) that fE E{. Thus considering the extensions of <x, >we get
Eqs. (2.4) for i = 2,3 ...., n + 1 which are sufficient to determine Mi's. The
proof of the existence part of Theorem 5.1 follows from the diagonal
dominant property for Eqs. (2.4) which has already been demonstrated in
the proof of Theorem 2.1. The proof of the remaining part of the Theorem
for case (i) essentially follows from (3.9) and (4.6). In the other case the
proof is similar.

It may be observed that if we assume the mesh points to be uniform,
then our Theorem 5.1 proves the existence and uniqueness of the cubic
spline interpolant considered in [6].

6. I"'TERPOLATION ON A GEOMETRIC MESH

We shall show in this section that equispacing of mesh points produces
certain limitations on the choice of the points of interpolation which could
be avoided otherwise. To support this we derive the following which shows
that the point of interpolation could be chosen anywhere between the suc­
cessive mesh points whereas in the case of uniform meshes this is not
possible (see [3.6J).

COROLLARY 6.1. Il h, l/h i =1.12 (or (1.12) I) for all i then for
0:(; () :(; 1/2 (or 1/2:(; () :(; I), there exists a unique .\pline s in SI (3, P) which
satis/les the interpolatory condition (2. i).

Prool olthe Corollary. Writing L: = 1.12 it follows from (3.6) that the
excess of the coefficient of M, lover the sum of the coefficients of
ll{ 2,1\.(, and lvl i + I is
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which is positive if 0:( ():( 1/2. Next we observe that in the other case in
which h,/h, 1 = v, the excess of the coefficient of M i over the sum of the
coefficients of M, 1, M, 2' and M i + I is U(O*) which is clearly positive for
1/2:( 11 :( I.
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